Hydrodynamic stress in orbitally shaken bioreactors

نویسندگان

  • Stéphanie Tissot
  • Martino Reclari
  • Samuel Quinodoz
  • Matthieu Dreyer
  • Dominique T Monteil
  • Lucia Baldi
  • David L Hacker
  • Mohamed Farhat
  • Marco Discacciati
  • Alfio Quarteroni
  • Florian M Wurm
چکیده

Materials and methods CHO-DG44 cells were cultivated in suspension in 1-L bottles as described in [1]. To determine conditions under which the shear stress was harmful for the cells, the bottles were orbitally shaken on an ES-X platform (Kühner AG, Birsfelden, Switzerland) at agitation rates from 150 to 200 rpm for 24 h. Control cultures were run in parallel with agitation at 110 rpm. The velocity fields, shear stress, and free surface of a 1-L bottle at 110 rpm were simulated with Computational Fluid Dynamics (CFD). The Navier-Stokes equation was approximated with the finite element method. The simulations were all based on a mesh containing 50’000 tetrahedra and 10’000 vertices. The area of a finite element was 9.8 cm. Because of the chosen discretization, each time step required the resolution of a linear system composed of 190’000 unknowns.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fluid dynamics and mixing behavior in orbitally shaken bioreactors for mammalian cell cultivation

Rationale and significance. Recombinant therapeutic proteins are frequently produced in mammalian cells cultivated in suspension in large-scale stirred tank bioreactors. There are three major drawbacks to stirred-tank bioreactors. First, they are expensive to purchase and maintain, limiting their availability to some potential users. Second, they have not been adapted to volumetric scales less ...

متن کامل

kLa as a predictor for probe-independent mammalian cell bioprocesses in orbitally shaken bioreactors

Background Orbitally shaken flasks are commonly used at an early stage of bioprocess development with mammalian cells. In contrast to large-scale stirred-tank bioreactors, shaken flasks are usually operated in probe-independent bioprocesses, i.e. without strictly controlling the pH or dissolved oxygen concentration (DO). As a consequence, gas transfer issues are thought to limit the effectivene...

متن کامل

Correlation between mass transfer coefficient kLa and relevant operating parameters in cylindrical disposable shaken bioreactors on a bench-to-pilot scale

BACKGROUND Among disposable bioreactor systems, cylindrical orbitally shaken bioreactors show important advantages. They provide a well-defined hydrodynamic flow combined with excellent mixing and oxygen transfer for mammalian and plant cell cultivations. Since there is no known universal correlation between the volumetric mass transfer coefficient for oxygen kLa and relevant operating paramete...

متن کامل

Novel orbital shake bioreactors for transient production of CHO derived IgGs.

Large-scale transient gene expression in mammalian cells is being developed for the rapid production of recombinant proteins for biochemical and preclinical studies. Here, the scalability of transient production of a recombinant human antibody in Chinese hamster ovary (CHO) cells was demonstrated in orbitally shaken disposable bioreactors at scales from 50 mL to 50 L. First, a small-scale multi...

متن کامل

Quasi-continuous parallel online scattered light, fluorescence and dissolved oxygen tension measurement combined with monitoring of the oxygen transfer rate in each well of a shaken microtiter plate

BACKGROUND Microtiter plates (MTP) are often applied as culture vessels in high-throughput screening programs. If online measuring techniques are available, MTPs can also be applied in the first steps of process development. For such small-scale bioreactors dipping probes are usually too large; therefore, optical measurements are often used. For example, the BioLector technology allows for the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2011